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Abstract

This paper proposes a new WENO procedure to compute problems containing both discontinuities and a large dispar-
ity of characteristic scales.

In a one-dimensional context, the WENO procedure is defined on a three-points stencil and designed to be sixth-order
in regions of smoothness. We define a finite-volume discretization in which we consider the cell averages of the variable and
its first derivative as discrete unknowns. The reconstruction of their point-values is then ensured by a unique sixth-order
Hermite polynomial. This polynomial is considered as a symmetric and convex combination, by ideal weights, of three
fourth-order polynomials: a central polynomial, defined on the three-points stencil, is combined with two polynomials
based on the left and the right two-points stencils.

The symmetric nature of such an interpolation has an important consequence: the choice of ideal weights has no influ-
ence on the properties of the discretization. This advantage enables to formulate the Hermite interpolation for non-
uniform meshes. Following the methodology of the classic WENO procedure, nonlinear weights are then defined.

To deal with the peculiarities of the Hermite interpolation near discontinuities, we define a new procedure in order for
the nonlinear weights to smoothly evolve between the ideal weights, in regions of smoothness, and one-sided weights,
otherwise.

The resulting scheme is a sixth-order WENO method based on central Hermite interpolation and TVD Runge–Kutta
time-integration. We call this scheme the HCWENO6 scheme.

Numerical experiments in the scalar and the 1D Euler cases make it possible to check and to validate the options
selected. In these experiments, we emphasize the resolution power of the method by computing test cases that model real-
istic aero-acoustic problems.
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1. Introduction

Nowadays, high-order computational methods are highly demanded for solving problems in computational
fluid dynamics (CFD). For flow problems with intricate structures and a very broad range of characteristic
scales, high resolution is necessary in order for the structural information to be correctly extracted.

For example, in the direct numerical simulation (DNS) and the large eddy simulation (LES) of turbulence,
it is required that the numerical schemes be highly accurate. Computational aero-acoustics (CAA) is another
area where high-resolution schemes are required. Moreover, if the flow fields involve shock waves, those
schemes should also be non-oscillatory near the discontinuities without leading to an excessive damping of
the turbulent or acoustic fluctuations, [19].

Weighted essentially non-oscillatory (WENO) schemes are one class of high-order numerical schemes. His-
torically, WENO schemes are based upon the successful essentially non-oscillatory (ENO) schemes that
started with the henceforth-classic paper of Harten et al. in 1987, [1].

However, WENO schemes improve upon ENO schemes in robustness, smoothness of the numerical fluxes,
convergence properties and computational efficiency. Owing to these advantages, a large variety of WENO
schemes was designed in recent years; see [2] for a good overview.

Nevertheless, in spite of a vast field of application, numerical tests indicate that classical WENO schemes
are usually not optimal for computing turbulent flows or aero-acoustic fields because they can lead to a sig-
nificant damping of the turbulent or acoustic fluctuations.

A way to improve the dissipation properties of a WENO scheme consists in reducing its stencil width.
Indeed, the compactness of a numerical stencil owes many advantages: firstly, boundary conditions and com-
plex geometries are easier to deal with; secondly, for the same formal accuracy, compact stencils are known to
exhibit significantly more resolution of the smaller scales by improving the dispersive and the dissipative prop-
erties of the numerical scheme, [4,3].

Mainly, there are two ways for increasing the compactness of a numerical stencil. Based on Lele’s work, [3],
a first approach consists in using compact high-order schemes which consider as unknowns, at each discret-
ization point, not only the value of the function but also those of its first or higher derivatives. Compact
schemes are very accurate in smooth regions with spectral-like resolution, but are known to produce non-
physical oscillations when they are applied directly to flow with discontinuities. A solution is to use compact
schemes coupled with the non-oscillatory properties of WENO schemes, [5,6].

Selecting this solution, the non-oscillatory shock-capturing schemes are only used locally near the discon-
tinuities and the compact schemes are employed in regions of smoothness. Thus, a hybrid compact-WENO
scheme combines the advantages of the compact schemes in smooth regions with a sharp representation of
discontinuities.

However, compact schemes are implicit schemes: an algebraic linear system must be solved to
obtain the spatial derivatives at any point. Lastly, those schemes are difficult to extend to non-uniform
meshes.

Another way for increasing the compactness of a numerical stencil consists in evolving in time not only the
primitive variable but also its derivatives. Then, more than one degree of freedom per cell is considered. For
this purpose, a Hermite polynomial is usually defined to interpolate the solution and its derivatives.

In 1977, Van-Leer was the first one to study in details such schemes in a finite-difference context, [4]. He
clearly demonstrated the advantages in using more numerical information inside the mesh: for the same given
order of consistency, dispersive and dissipative errors are lowered if one uses such schemes. Since Van-Leer’s
paper, much work was done in this direction; for example see [7–9], in the recent years.

More recently, Qiu and Shu proposed a fifth-order WENO scheme based on Hermite polynomials for solv-
ing 1D nonlinear conservation laws systems, [10,11]. In a finite-volume context and following the original
WENO philosophy, [2], the function and its first derivative are evolved in time and used in the polynomial
reconstruction. Two Hermite polynomials are then defined: the first one is used to calculate the point-values
of the solution from cell averages; the second Hermite polynomial enables the calculation of the point-values
of the first derivative. In order for both reconstructions to be non-oscillatory, Qiu and Shu calculate nonlinear
weights, according to [2]. The ideal weights that characterize the fifth-order accuracy are calculated for
uniform meshes and are different from one polynomial to another.



2432 G. Capdeville / Journal of Computational Physics 227 (2008) 2430–2454
Doing so, a fifth-order upwind reconstruction (HUWENO5) method is generated with only three-points for
the numerical stencil. In this paper, we follow this direction of research.

In a finite-volume framework, we construct a sixth-order non-oscillatory scheme for solving 1D nonlinear
hyperbolic systems of conservation laws. This scheme lies upon a central and local Hermite WENO
interpolation.

To generate such a scheme, we use and extend the ideas of Levy et al. [12]. In their paper, the authors intro-
duced a new central weighted non-oscillatory (CWENO) reconstruction. This new reconstruction is based on
defining a suitable quadratic function that is added to linear polynomials to obtain third-order accuracy in
smooth regions. In regions with discontinuities or large gradients, the weights are automatically and smoothly
changed so that they switch to a one-sided second-order linear reconstruction. This reconstruction turns out to
be extremely compact; in the one-dimensional case, the reconstruction is based on a three-point stencil. The
main advantage of this procedure is that the choice of ideal weights has no influence on the properties of the
discretization. Any symmetric choice of the constants defining the ideal weights will provide the desired accu-
racy. This property must be contrasted with classical upwind WENO reconstructions.

To maintain this property and to increase the accuracy on the same stencil (three-points for the one-dimen-
sional problem), we develop a specific non-oscillatory Hermite polynomial based on the variable and its first
derivative.

For this purpose, three polynomials are defined: two third degree polynomials based on a left and a right
two-point stencil and a fifth-degree central polynomial based on the three-points stencil. This latter polyno-
mial is necessary for the accurate recovery of the point-values in regions of smoothness. A convex combination
by ideal and symmetric weights of those polynomials enables to define the sixth-order optimum polynomial on
the three-points stencil.

To complete the non-oscillatory reconstruction, the calculation of the nonlinear weights is defined. Owing
to the peculiarities of the Hermite interpolation, we need to define a new procedure for the nonlinear weights
to evolve smoothly between the ideal and the one-sided weights.

While comparing with the HUWENO5 of Qiu and Shu, [10], the scheme we proposed has several significant
differences:

� A unique Hermite polynomial is used to interpolate both the variable and its derivative.
� The same nonlinear weights are defined for both the variable and its first derivative.
� The procedure can be extended to non-uniform meshes with large stretching, without generating negative

weights and without resorting to metric transformations. The high-resolution properties of the method are
then maintained on such meshes.
� The resulting finite-volume scheme is sixth-order in smooth regions, fourth-order close to the singularities

and, when that becomes necessary, first-order at the place of a discontinuity.

This paper is organized as follows: we start in Section 2 by defining the finite-volume framework of the
method. In Section 3, we detail the construction and implementation of the HCWENO6 scheme, for 1D scalar
and 1D Euler equations. Hermite interpolations are defined on non-uniform meshes; the specific procedure to
generate a non-oscillatory reconstruction is then emphasized.

In Section 4, we select numerical tests to validate the method. Asymptotic analysis stability is first man-
aged, to check the influence of the boundary conditions, the stretching of the mesh and possible source terms.
The scheme is then tested by computing solutions of scalar nonlinear and 1D Euler equations. Emphasis is
put on the resolution power of the method by computing cases that model realistic aero-acoustic
configurations.
2. Governing equations and finite-volume framework

2.1. Governing equations

Let the following scalar nonlinear hyperbolic problem defined over the domain, X:
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ut þ f ðuÞx ¼ 0 8x 2 X

uðx; t ¼ 0Þ ¼ u0ðxÞ

�
ð1Þ
Let r ” ux and g(u, r) ” f 0(u) · ux = f 0(u) · r.
Then by deriving (1), we can define the new nonlinear hyperbolic problem over X:
ut þ f ðuÞx ¼ 0; uðx; t ¼ 0Þ ¼ u0ðxÞ
rt þ gðu; rÞx ¼ 0; rðx; t ¼ 0Þ ¼ u00ðxÞ

�
ð2Þ
Since g(u, r) = f 0(u) · r, this implies that the characteristic velocity, og
or, of the equation for the derivative vari-

ables, r, is f 0(u). Consequently, both equations constituting (2) share the same characteristic velocity: this result
is used in what follows to generate a simple approximate Riemann solver discretizing (2).

Defining the discrete cell Ii ” [xi�1/2,xi+1/2], X is partitioned in N non-overlapping cells: X ¼
SN

i¼1I i. The
non-uniform cell size is calculated as Dxi ” xi+1/2 � xi�1/2.

Lastly, we define the discrete cell averages of u and r as �ui � 1
Dxi

R
Ii

uðx; tÞdx, �ri � 1
Dxi

R
Ii

rðx; tÞdx.
Integrating (2) over Ii produces the following system of ordinary differential equations (ODE) for the vari-

ables �ui;�ri:
d�ui
dt ¼ � 1

Dxi
½f ðuðxiþ1=2; tÞÞ � f ðuðxi�1=2; tÞÞ�

d�ri
dt ¼ � 1

Dxi
½gðuðxiþ1=2; tÞ; rðxiþ1=2; tÞÞ � gðuðxi�1=2; tÞ; rðxi�1=2; tÞÞ�

(
ð3Þ
By using the classical ‘‘method of lines’’, time and space are separately discretized.
2.2. Spatial approximation: the numerical fluxes

Following the finite-volume methodology for generating a numerical scheme, the fluxes for u and r are
approximated according to
f ðuðxiþ1=2; tÞÞ � ~f iþ1=2 � ~f uL
iþ1=2; u

R
iþ1=2

� �
gðuðxiþ1=2; tÞ; rðxiþ1=2; tÞÞ � ~giþ1=2 � ~g uL

iþ1=2; r
L
iþ1=2; u

R
iþ1=2; r

R
iþ1=2

� �
8><>: ð4Þ
uL;R
iþ1=2 (resp. rL;R

iþ1=2) represent the numerical approximations to the functions u(x, t) (resp. r(x, t)) at the left and
the right of the interface x = xi+1/2, Fig. 1. The way of constructing the numerical fluxes, ~f , ~g, defines the up-
wind method.

To calculate those numerical fluxes, we selected the HLL (Harten, Lax and Van-Leer) approximate Rie-
mann solver, [17].
Fig. 1. Reconstruction of the point-values from cell averages at the interface x = xi+1/2.
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Thus, we get the following expressions for the numerical fluxes ~f and ~g:
~f iþ1=2 ¼
kþ

iþ1=2
f ðuL

iþ1=2
Þ�k�iþ1=2

f ðuR
iþ1=2

Þ
kþ

iþ1=2
�k�iþ1=2

þ
kþ

iþ1=2
�k�iþ1=2

kþ
iþ1=2

�k�iþ1=2
uR

iþ1=2 � uL
iþ1=2

� �
~giþ1=2 ¼

kþ
iþ1=2

gðuL
iþ1=2

;vL
iþ1=2

Þ�k�iþ1=2
gðuR

iþ1=2
;vR

iþ1=2
Þ

kþ
iþ1=2

�k�iþ1=2
þ

kþ
iþ1=2

�k�iþ1=2

kþ
iþ1=2

�k�iþ1=2
vR

iþ1=2 � vL
iþ1=2

� �
8>><>>: ð5Þ
With, in the scalar case, the following choices for the characteristic velocities k�iþ1=2:
kþiþ1=2 � max f 0ðuL
iþ1=2Þ; f 0ðuR

iþ1=2Þ; 0
� �

k�iþ1=2 � min f 0ðuL
iþ1=2Þ; f 0ðuR

iþ1=2Þ; 0
� �

8><>: ð6Þ
2.3. Time-integration scheme: the RGK3-TVD scheme

The discretization of the spatial operator generates an algebraic system of ODEs in time, for the discrete
unknowns ð�ui;�riÞ.

If we define the followings spatial operators:
F ð�u;�rÞji � � 1
Dxi
½~f iþ1=2 � ~f i�1=2�

Gð�u;�rÞji � � 1
Dxi
½~giþ1=2 � ~gi�1=2�

(
ð7Þ
Then we obtain the following system of ODEs:
d�ui
dt ¼ F ð�u;�rÞji
d�ri
dt ¼ Gð�u;�rÞji

(
ð8Þ
This system is integrated by a third-order TVD Runge–Kutta scheme, [13].
The general algorithm is
/ð1Þi ¼ /n
i þ Dt � Lð/nÞ

/ð2Þi ¼ 3
4
/n

i þ 1
4
/ð1Þi þ Dt

4
� Lð/ð1ÞÞ

/nþ1
i ¼ 1

3
/n

i þ 2
3
/ð2Þi þ 2Dt

3
� Lð/ð2ÞÞ

8>><>>: ð9Þ
with the following associated definitions: / � �u
�r

�
and L � F ð�u;�rÞ

Gð�u;�rÞ

�
.

3. Non-oscillatory reconstruction: the HCWENO6 scheme

3.1. Reconstruction from cell averages ð�ui;�riÞ

To begin, we select an optimal Hermite polynomial of degree 5, denoted by ~uoptðxÞ, on the central stencil
{Ii�1, Ii, Ii+1}, Fig. 2: ~uoptðxÞ �

P6
j¼1aj�1ðx� xiÞj�1.
Fig. 2. Central, left and right stencils for the HCWENO6 procedure.
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Following [1], ~uoptðxÞ is uniquely defined by the relations:
1
Dxiþk

R
Iiþk

~uoptðxÞdx ¼ �uiþk

1
Dxiþk

R
Iiþk

d
dx ~uoptðxÞdx ¼ �riþk

(
k 2 f�1; 0; 1g ð10Þ
Thus, we generated a linear system for the undetermined coefficients {aj}.
This system can be re-written as
U ¼ C� A ð11Þ

with the following notations:
U � ½�ui�1; �ui; �uiþ1;�ri�1;�ri;�riþ1�t

A � ½aj�tj2f0;...;5g

C �

c1j ¼ ð�1Þj
jDxi�1

Dxi
2

� �j � ðDxi�1 þ Dxi
2
Þj

h i
c2j ¼ ðDxiÞj�1

j2j ð1þ ð�1Þjþ1Þ

c3j ¼ 1
jDxiþ1

Dxiþ1 þ Dxi
2

� �j � Dxi
2

� �j
h i

c4j ¼ ð�1Þj�1

Dxi�1

Dxi
2

� �j�1 � Dxi�1 þ Dxi
2

� �j�1
h i

c5j ¼ ðDxiÞj�2

2j�1 ð1þ ð�1ÞjÞ

c6j ¼ 1
Dxiþ1
½ðDxiþ1 þ Dxi

2
Þj�1 � Dxi

2

� �j�1�

2666666666666664

j 2 f1 . . . 6g
For solving the Riemann’s problem (4), we only need the approximations to the values of (u(x), r(x)) at the cell
boundaries.

Those values are calculated by
uL
iþ1=2 ¼ ðtD� C�1Þ � U �

P3
j¼1

~aj�uiþj�2 þ
P6
j¼4

~aj�riþj�5

rL
iþ1=2 ¼ ðtE� C�1Þ � U �

P3
j¼1

~bj�uiþj�2 þ
P6
j¼4

~bj�riþj�5

8>>><>>>: ð12Þ
with the following definitions: D � Dxi
2

� �j�1
h i

j¼1...6
, E � ðj� 1Þ Dxi

2

� �j�2
h i

j¼1...6

The constants f~aj; ~bjg depend on the cell sizes, Dxi, but not on the function u or r itself. Practically, those
constants are pre-computed in the case of a non-uniform grid and stored before solving the PDEs.

For the calculations of uR
i�1=2 and rR

i�1=2, the constants f~aj; ~bjg are simply calculated by modifying the form
of the vectors D and E:
D � ð�1Þjþ1 Dxi

2

� �j�1
" #

j¼1...6

; E � ð�1Þjðj� 1Þ Dxi

2

� �j�2
" #

j¼1...6
Finally, the calculated point-values at the cell boundary x = xi+1/2 are such that
uiþ1=2 ¼ uðxiþ1=2Þ þOðDx6Þ
riþ1=2 ¼ d

dx uðxiþ1=2Þ þOðDx5Þ

(
ð13Þ
To derive an essentially non-oscillatory reconstruction, we need to define two supplementary polynomials
approximating (u(x), r(x)) with a lower accuracy on Ii.

Thus, we define the third-degree polynomial, ~u1ðxÞ, on the reduced stencil {Ii�1, Ii} whereas the third-degree
polynomial, ~u2ðxÞ, is defined on the stencil {Ii, Ii+1} (see Fig. 2).
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3.2. Essentially-non-oscillatory reconstruction

If the discrete stencil defining ~uoptðxÞ contains a discontinuity or large gradients, spurious oscillations can
appear in the numerical solution. To avoid such a problem we construct a WENO procedure that smoothly
adapts the stencil in the neighbourhood of the singularity.

Defining the non-oscillatory reconstruction on Ii by ~uiðxÞ, we want the following properties to be verified:
~uiðxÞ ¼

~uoptðxÞ if the stencil fI i�1; I i; I iþ1g is in the smooth regions

~u1ðxÞ if the solution is not smooth and fI i�1; I ig is in the smooth region

~u2ðxÞ if the solution is not smooth and fI i; I iþ1g is in the smooth region

�ui; otherwise

8>>><>>>: ð14Þ
The latter condition is specific to a Hermite interpolation.
Indeed, this condition becomes necessary when the solution is discontinuous and the central point of the

stencil {Ii�1, Ii, Ii+1} is such that
�ri ¼ O
1

Dx

� �
ð15Þ
In such a case, the property (15) may introduce an oscillation O(1/Dx) into the interpolation; consequently,
neither the stencil {Ii�1, Ii} nor the stencil {Ii, Ii+1} that use �ri are admissible to generate a non-oscillatory
reconstruction. The solution adopted to circumvent this problem is to locally degrade the scheme with the
first-order when the property (15) appears.

At least theoretically, this new characteristic could be estimated as a drawback when compared with clas-
sical finite-volume WENO schemes. However, one can make two remarks to moderate this point:

� Owing to the property of convexity of physical flux, characteristic curves converge towards the shock wave
when this one exists. This means that the numerical error generated in discretizing such a discontinuity
remains confined near this one. Unfortunately, this is no more the case when a linear discontinuity such
as a contact discontinuity, appears into the solution: in such a case one can expect this discontinuity to
be under solved.
� As demonstrated in [14] or [15], all shock-capturing methods satisfy, at best, the Rankine–Hugoniot jump

conditions to first-order in L1-norm, regardless of how accurately they model the differential equations.

To implement a specific solution technique, we extended the principle of the central WENO interpolation
defined in [12].

First, we construct an ENO interpolant as a combination of Hermite polynomials that are based on differ-
ent discrete stencils.

Specifically, we define in the discrete cell Ii:
~uiðxÞ � �ui þ
X

j

wjð~ujðxÞ � �uiÞ; wj P 0; j 2 f1; 2; cg; ð16Þ
where ~u1ðxÞ (resp. ~u2ðxÞ) is the third-degree polynomial based on the left stencil {Ii�1, Ii} (resp. right stencil
{Ii, Ii+1}) and ~ucðxÞ is a fifth-degree central polynomial.

Consequently, upon considering (16), all that is left is to reconstruct a central polynomial, ~ucðxÞ, such that
the combination, (16), will be sixth-order accurate in smooth regions. In other words, ~ucðxÞ must be such that
~uiðxÞ � ~uoptðxÞ in smooth regions.

Therefore, it must verify
~uoptðxÞ ¼ �ui þ C1 � ð~u1ðxÞ � �uiÞ þ C2 � ð~u2ðxÞ � �uiÞ þ Cc � ð~ucðxÞ � �uiÞ 8x 2 I iX
j

Cj ¼ 1; Cj P 0; j 2 f1; 2; cg ð17Þ
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The constants Cj represent ideal weights so that ~uiðxÞ is identified with ~uoptðxÞ when the solution is smooth. As
already noted in [12], the freedom in selecting those constants has no influence on the properties of the numer-
ical stencil; any symmetric choice in (17), provides the desired accuracy for ~uoptðxÞ.

In what follows, we make the choice: C1 = C2 = 1/4, Cc = 1/2. Then, the central polynomial, ~ucðxÞ, can be
deduced from (17):
~ucðxÞ ¼ �ui þ ½ð~uoptðxÞ � �uiÞ � C1ð~u1ðxÞ � �uiÞ � C2ð~u2ðxÞ � �uiÞ�=Cc 8x 2 I i ð18Þ

The role of ~ucðxÞ is only to get an optimal accuracy in smooth regions; in the presence of a discontinuity, the
weights of ~ucðxÞ and one of the left or the right stencil will be practically zero; then, the remaining one-sided
stencil that lies in the smooth region, will provide a fourth-order non-oscillatory reconstruction of the
solution.

To complete the reconstruction of ~uiðxÞ and to ensure properties (14), it is left to compute the weights, wj.
To define those weights, we follow the reasoning of [2].

To achieve the optimal interpolation, (17), in smooth regions, the weights wj must smoothly converge to the
ideal weights Cj as Dx approaches zero. In an opposite way, in regions where a discontinuity does exist, the
weights should effectively remove the contribution of stencils that contain the discontinuity, according to
properties (14).

To this end, combining (16) and (17) gives
~uiðxÞ ¼ ~uoptðxÞ þ
X

j2f1;2;cg
ðwj � CjÞð~ujðxÞ � �uiÞ 8x 2 I i ð19Þ
Since ~ujðxÞ ¼ uðxÞ þOðDx4Þ, j 2 {1,2,c}, wherever the solution is smooth, (19) can be re-written as
~uiðxÞ ¼ ~uoptðxÞ þ
X

j2f1;2;cg
ðwj � CjÞðuðxÞ � �ui þ DjDx4Þ 8x 2 I i ð20Þ
Therefore, the second term of (20) must be at least an O(Dx6) quantity in order for the combination to be
sixth-order accurate at the boundary extrapolated points.

Then, sufficient conditions are
P
j2f1;2;cg

wj � 1

 !
ðuðxÞ � �uiÞ ¼ OðDx6ÞP

j2f1;2;cg
ðwj � CjÞDj ¼ OðDx2Þ

8>>><>>>: ð21Þ
But, since ðuðxÞ � �uiÞ ¼ OðDxÞ, it is sufficient to require
P
j2f1;2;cg

wj � 1 6 OðDx5Þ

wj � Cj 6 OðDx2Þ;wj P 0 8j 2 f1; 2; cg

8<: ð22Þ
Up to this point, the development of the sixth-order Hermite WENO scheme has been general. To fully deter-
mine the HCWENO6 scheme, we need now to specify the nonlinear weights. Before that, note that constraints
presented in [2] ð

P
jwj ¼ 1;wj 2 ½0; 1�Þ are slightly more restrictive than (22). In our case, the condition given

in [2] must be relaxed in order for the scheme to entirely complete properties (14). This means that the non-
linear weights designed in [2] cannot ensure the ENO property of (16): specific weights must be formulated to
retain sixth-order convergence properties and to avoid Gibbs-like phenomena near discontinuities.

3.3. The nonlinear weights

To begin, we calculate the general indicators of smoothness defined in [2]
ISi
j �

1

u2
max

X
k

Dx2k�1
i �

Z
I i

dk~uj

dxk

� �2

dx; j 2 f1; 2; cg ð23Þ
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where umax is calculated over the whole calculation domain X: umax = maxjujx2X. Those indicators provide a
measure of the smoothness of the solution over the cell Ii, according to the particular stencil selected to define
~ujðxÞ on that cell.

In regions of smoothness, ISi
j 	 1, whereas ISi

j ¼ Oð1Þ in cells with strong gradients or discontinuities.
Specifically, formula (23) can be explicited for ~u1ðxÞ and ~u2ðxÞ ð�

P4
j¼1aj�1xj�1Þ on a non-uniform mesh:
ISi
j ¼ a2

1Dx2
i þ

13

3
a2

2 þ
1

2
a1a3

� �
Dx4

i þ
3129

80
a2

3Dx6
i ; j 2 f1; 2g ð24Þ
For ~ucðxÞ, formula (23) and result (18) give
ISi
c ¼ a2

1Dx2
i þ

13

3
a2

2 þ
1

2
a1a3

� �
Dx4

i þ
1

8
a1a5 þ

21

5
a2a4 þ

3129

80
a2

3

� �
Dx6

i ð25Þ
The polynomial coefficients {aj} are calculated by numerically inverting (11).
Hence, having calculated ISi

j, we introduce the new sensor, bi
j; j 2 f1; 2; cg, a normalized smoothness indi-

cator defined on Ii and such that
bi
j ! 0 in regions of smoothness

bi
j ! 1 if there exist a discontinuity

(
ð26Þ
Practically, we suggest the following formulation for this sensor:
bi
j �

ðISi
jÞ

2

1þ ðISi
jÞ

2
; j 2 f1; 2; cg 8x 2 I i ð27Þ
From the asymptotic behaviour of the smoothness indicator and depending on the smoothness of the solu-
tion, ISi

j, one can easily verify that formulation (27) follows the requirements of (26).
By normalizing the domain of variation of the smoothness indicator, such a formulation makes it possible

to define more easily smooth functions for the calculation of the nonlinear weights, wj. Moreover, this normal-
ized smoothness indicator prevents the use of the parameter e that appears in [2]. Indeed, this parameter was
initially introduced to prevent an indeterminate form in the calculation of the wj. However, as demonstrated in
[16], this parameter plays a crucial role and must be selected on a case-by-case basis since it appears as a
dimensional quantity.

After several trials and errors with the numerical experiments presented below, we propose the following
formulation to calculate the weights wj on Ii:
wj �
Cj

2
1þ tanh

1� 4ðbi
jÞ

2

2l

 !" #
; j 2 f1; 2; cg ð28Þ
l is non-dimensionalized parameter introduced to adjust the switch between the ideal weights, Cj, defined in
(17) and the ENO weights. Extensive numerical computations have shown that the best compromise between
accuracy and non-oscillatory properties was ensured for l = 0.1. Practically, this parameter will remain un-
changed in what follows.

When the mesh is uniform, one can verify the validity of (28). Indeed, expansions of (24) and (25) around
x = xi (Dxi ” Cte ” Dx), yield the following results:
ISi
j ¼ ðDx� uxÞ2 þ

13

12
ðDx2uxxÞ2 þOðDx5Þ; j 2 f1; 2; cg ð29Þ
Therefore, the ISi
j are of the form:
ISi
j ¼ ðDx� uxÞ2ð1þ CDx2Þ; j 2 f1; 2; cg ð30Þ
Consequently, the bi
j are such that
bi
j �

ðDx� uxÞ4

1þ ðDx� uxÞ4
ð31Þ
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Thus bi
j ¼ OðDx4Þ in regions of smoothness and approaches unity by its lower bound in the cells crossed by a

discontinuity.
Finally, by expanding (28) around bi

j � 0 and bi
j � 1, one can deduce the following asymptotic behaviour

for the wj:
wj �
Cj 1� 4e

1
l

ð1þe
1
lÞ2�l

Dx8

	 

if bi

j ¼ OðDx4Þ

Cj
�8e

�3
l

ðe
�3
l þ1Þ2�l

� ðbi
j � 1Þ

	 

if bi

j ! 1�

8>>><>>>: ð32Þ
One can check that conditions (22) are satisfied provided that l	 1. Moreover, the convergence of wj towards
the ideal weights is very fast when bi

j 	 1. Indeed, with the value l = 0.1, we get from (32) the following result:
wj ¼ Cjð1� 1:8� 10�3ðbi
jÞ

2 þO½ðbi
jÞ

3�Þ ð33Þ
Similarly, when bi
j approaches unity, we obtain
wj ¼ Cjð�7:5� 10�12ðbi
j � 1Þ þO½ðbi

j � 1Þ2�Þ ð34Þ
This fast rate of convergence is an advantage since it means that the region of low precision will be circum-
scribed around the singularity.

Practically, to reach machine precision, wj is set to the ideal weight, Cj, as soon as jwj � Cjj 6 10�3 in a cell.
Similarly, wj is set to zero when the coefficient in front of Cj in (28) is lower than 10�8. Those values were opti-
mized by considering the Burgers equation. Although such a procedure introduces new parameters into the
method – parameters that may be problem dependent – all the numerical results presented in this article
are computed with the same thresholds for all the test cases investigated.

3.4. The HCWENO6 upwind scheme for scalar hyperbolic problems

The final form of the HCWENO6 upwind scheme is given by
of
ox

��
i
¼ ð

~f iþ1=2�~f i�1=2Þ
Dxi

og
ox

��
i
¼ ð~giþ1=2�~gi�1=2Þ

Dxi

8<: ð35Þ
and
~uL
iþ1=2 ¼ �ui þ

P
j2f1;2;cg

wj � ð~ujðxiþ1=2Þ � �uiÞ

~rL
iþ1=2 ¼ �ri þ

P
j2f1;2;cg

wj � d
dx ~ujðxiþ1=2Þ � �ri

� �
8><>: ð36Þ
Contrarily to [10], the same Hermite polynomial is used to interpolate both the function ð~uL
iþ1=2Þ and its deriv-

ative ð~rL
iþ1=2Þ; this means that the nonlinear weights are unchanged when passing from ~uL

iþ1=2 to ~rL
iþ1=2.

~f iþ1=2 and ~giþ1=2 are calculated by the HLL solver (formulae (5) and (6)). The nonlinear weights, {wj}, are
given by equation (28) and calculated from (24), (25) and (27). The polynomial coefficients, {aj}, used in (24)
and (25) are calculated by numerically inverting three linear systems such as (11): two 4 · 4 systems for the
coefficients of ~ujðxÞ; j 2 f1; 2g and a 6 · 6 system for ~uoptðxÞ: ~ucðxÞ is then deduced from those polynomials (for-
mula (18)). Then, the calculation of ð~uL

iþ1=2;~r
L
iþ1=2Þ can be done by using (12) for each polynomial.

3.5. Extension to nonlinear systems: the one-dimensional Euler equations

In this section, we extend the HCWENO6 scheme to solve systems of hyperbolic conservation laws. Spe-
cifically, we consider the one-dimensional Euler equations in the following conservation form:
oU

ot
þ oFðUÞ

ox
¼ 0 ð37Þ
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where
U � ½q; qu; qE�t; F � ½qu;qu2 þ p; quH �t ð38Þ

H ” E + p/q is the specific total enthalpy and this set of equations is closed by the equation-of-state of an ideal
gas: p = (c � 1)(qE � u2/2), c = 1.40.

To use a Hermite procedure, we derive the following set of systems from (37):
oU

ot
þ oFðUÞ

ox
¼ 0

oV

ot
þ oGðU ; V Þ

ox
¼ 0

8>><>>: ð39Þ
where we defined V ” [(q)x, (qu)x, (qE)x]t, G ” [(qu)x, (qu2 + p)x, (quH)x]t.
As in the scalar case, the semi-discrete conservative finite-volume scheme discretizing (39) is then written

as
dUi
dt ¼ � 1

Dxi
½eFiþ1=2 � eF i�1=2�

dVi
dt ¼ � 1

Dxi
½eGiþ1=2 � eGi�1=2�

8<: ð40Þ
To calculate ðeFiþ1=2; eGiþ1=2Þ, the HLL solver defined in the scalar case by (5) and (6), is simply extended to the
case of the Euler equations by re-defining the characteristic velocities k�iþ1=2:
kþiþ1=2 � maxðuL
iþ1=2 þ aL

iþ1=2; u
R
iþ1=2 þ aR

iþ1=2; 0Þ
k�iþ1=2 � minðuL

iþ1=2 � aL
iþ1=2; u

R
iþ1=2 � aR

iþ1=2; 0Þ

(
ð41Þ
where aL;R �
ffiffiffi
cp
q

q ���L;R is the speed of sound for an ideal gas.
The conservative point-values, ðUL;R

iþ1=2;V
L;R
iþ1=2Þ, are calculated from the interpolated primitive variables

½qL;R
iþ1=2; u

L;R
iþ1=2; p

L;R
iþ1=2�

t and ½ðqxÞ
L;R
iþ1=2; ðuxÞL;Riþ1=2; ðpxÞ

L;R
iþ1=2�

t. Those variables are interpolated by using the HCWE-

NO6 procedure developed in the scalar case. Although this choice is not referenced in the literature as the best
one for dealing with one-dimensional problems (a characteristic-wise reconstruction would be more suitable) it
has the advantage of being general since its extension to multi-dimensional problems is straightforward. This
is no more the case if one selects the characteristic variables since those quantities are undefined (there exists
an infinite number of characteristic directions for a multi-dimensional hyperbolic problem). Let us note how-
ever, that the characteristic directions selected for multi-dimensional computations, can be grid aligned; such a
choice may give good numerical results but its justification becomes then of empirical nature so that a char-
acteristic-wise reconstruction can be considered, a priori, equivalent to a component-wise reconstruction.

Lastly, only one smoothness indicator is calculated for the all the variables of the problem; this indicator is
based upon the density, q, since this quantity detects both a shock and a contact discontinuity.

We ensure the time-integration of (40) by using the third-order TVD Runge–Kutta procedure defined by
(9).
4. Numerical validation

4.1. Asymptotic stability analysis

To begin, we study the asymptotic stability of the HCWENO6 scheme. To this end, we compute the com-
plex eigenvalues of the matrices obtained by the spatial discretization of the following scalar linear system:
ut þ ux ¼ � 1
S

dS
dx u 8x 2 ½0; 1�

rt þ rx ¼ � d
dx

1
S

dS
dx

� �
u� 1

S
dS
dx r; ðr � uxÞ

(
þ

uðx ¼ 0; tÞ ¼ f ðtÞ
uðx ¼ 0; tÞ ¼ gðtÞ

�
ð42Þ
The computational domain is divided into N non-uniform intervals of width Dxi (”xi+1/2 � xi�1/2). The spatial
derivatives at all grid points, including the boundary points, are discretized by using the algebraic formulae
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previously developed. In such a case, we use the algebraic formulae defining the optimal polynomial and the
points close to the boundary are discretized with the same accuracy (sixth-order) as the interior points.

The source term: � 1
S

dS
dx u, is introduced to model problems with a varying geometry according to x (for

example, the one-dimensional nozzle flow problem).
In our example, the shape of the geometry is given by S(x) ” x2 � x + 1/2.
Thus, we write the upwind approximations:
uxji �
uL

iþ1=2
�uL

i�1=2

Dxi

rxji �
rL

iþ1=2
�rL

i�1=2

Dxi

8<: ð43Þ
Substituting the approximation (43) into the linear system (42) with the Dirichlet boundary conditions such as
defined in (42), leads to a system of ODEs that can be written
dU

dt
¼MUþQuf ðtÞ þQrgðtÞ þ SU ð44Þ
where U � ½�ui;�ri�t is a 2N-dimensional vector representing the values of the solution and its derivatives at the
discrete points.

M is a 2N · 2N matrix that contains the algebraic coefficients for the discretization and S the 2N · 2N

matrix accounting for the source terms. Lastly, Qu and Qr are vectors of dimension 2N accounting for the
boundary conditions at x = 0.

The asymptotic stability condition for the semi-discrete system (44) is that all eigenvalues of matrix M + S

only contain negative real parts. This is a necessary but not sufficient condition for the stability of
long-time-integration of the system, [18].

To begin, we study the spatial discretization of (42) with S ” 0 (no source terms). Fig. 3 gives numerical
results for N = 100 and N = 200 grid points and for two grid stretching typified by Dxmin/Dxmax = 1 (uniform
grid) and Dxmin/Dxmax = 0.1 (stretched grid). As expected, the upwinded space operator generates eigenvalues
of which the real component is different from zero: this real component indicates that the space discretization
operator has generated numerical dissipation. As one can see, the discretization is stable and is free of the grid
stretching: the eigenvalue which is closest to the unstable area is such that Re(k) = 10�16, Im(k) = 0, whatever
the stretching of the grid or the mesh resolution, Fig. 3(a)–(d). However, this is not always true. Indeed, when
a source term is introduced the real part of the discrete eigenvalues is not everywhere strictly negative, Fig. 4.
This is especially true for a grid stretching Dxmin/Dxmax = 0.1 (the mesh is refined in the zone where S is min-
imum), since more than 200 grid points are necessary in order for the largest real part of the discrete eigen-
values to be zero at the machine precision (10�8 in simple precision).

This means that the amount of stretching required for stability is a function of the number of grid points
when a source term is introduced in the equations. Practically, the computation of such problems is expected
to be more difficult.

Now, we study the time-integration of (44) by the third-order Runge–Kutta TVD procedure (9). For those
computations, the CFL is selected such that Dt/mini(Dxi) = 0.8. First, Fig. 5 presents numerical results with no
source terms (S ” 0 in (44)). As one can see, the HCWENO6 scheme with Dirichlet boundary conditions is
stable even on stretched meshes, since the discrete eigenvalue spectrum lies in the stability area of the Run-
ge–Kutta scheme. However, when one increases the CFL number to 0.9, some discrete eigenvalues are outside
the stability region: the numerical scheme then becomes unstable.

Now, if we introduce a source term in (44), we get the results presented in Fig. 6. We can see that with a
sufficient grid resolution (N = 250, CFL = 0.8), the scheme remains stable, even if the mesh is stretched
(Dxmin/Dxmax = 0.1).

To conclude this fist study, one can say that the discretization of the spatial term by the sixth-order Hermite
interpolation, is free of the grid stretching as long as there is no source term. When a source term exists, the
mesh resolution must be carefully selected; this is especially true when the source is highly varying. Moreover,
the influence of the boundary conditions imposes a practical limit to the CFL number.



Fig. 3. Asymptotic stability analysis: eigenvalue spectra for the discretization of ux by the HCWENO6 scheme. Influence of the grid
stretching, Dxmin/Dxmax and the grid resolution, N.

Fig. 4. Asymptotic stability analysis. Largest real part of the discrete spectra for the discretization of ux þ 1
S

dS
dx u by the HCWENO6

scheme. Influence of the mesh resolution, N, for a given stretching of the grid, Dxmin/Dxmax.
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Fig. 5. Space–time discretization of ut + ux = 0. N = 200, Dxmin/Dxmax = 0.1, CFL = 0.8.

Fig. 6. Space–time discretization of ut þ ux ¼ � 1
S

dS
dx u N = 250,Dxmin/Dxmax = 0.1, CFL = 0.8.
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4.2. Nonlinear scalar problem: the Burgers equation

We solve the following nonlinear scalar Burgers equation:
ut þ
u2

2

� �
x

¼ 0 8x 2 ½0; 2� ð45Þ
with the initial condition: u(x, t = 0) = 1/2 + sin(px) and a 2-periodic boundary condition. To begin, a uni-
form mesh with N cells is used for this test case. The CFL number is defined as maxijun

i jDt=miniDxi. Its value
is taken as 0.5 for both HCWENO6 and HUWENO5 schemes. For the accuracy tests, since the time-integra-
tion method incurs O(Dt3) errors, the time step is chosen to be Dt = Dx2/2 for the HCWENO6 scheme in order
for the discretization error of the overall scheme to be a measure of the spatial convergence only. The same
scaling for the time step is selected for the HUWENO5 scheme.

When t = 1/2p, the solution is still smooth and the discrete errors and numerical orders of accuracy are
shown in Table 1 (HCWENO6 scheme) and Table 2 (HUWENO5 scheme). As can be seen, both schemes
reach their designed order of accuracy; however, the HCWENO6 produces a lower error level on the same



Table 1
ut + uux = 0; u(x, t = 0) = 1/2 + sin(p · x); HCWENO6 scheme with periodic boundary conditions; t = 1/2p; Dt = Dx2/2; L1 and L1
errors

N L1 error L1 order L1 error L1 order

10 2.51 · 10�4 – 5.81 · 10�4 –
20 3.18 · 10�5 3 1.42 · 10�4 2
40 9.36 · 10�7 5.1 6.03 · 10�6 4.6
80 2.14 · 10�8 5.4 1.57 · 10�7 5.3
160 4.20 · 10�10 5.7 3.47 · 10�9 5.5
320 7.30 · 10�12 5.9 6.18 · 10�11 5.8

Table 2
ut + uux = 0; u(x, t = 0) = 1/2 + sin(p · x); HUWENO5 scheme with periodic boundary conditions; t = 1/2p; Dt = Dx2/2; L1 and L1
errors

N L1 error L1 order L1 error L1 order

10 3.66 · 10�3 – 7.29 · 10�3 –
20 1.86 · 10�4 4.1 8.03 · 10�4 3
40 1.07 · 10�5 3.9 6.06 · 10�5 3.5
80 3.54 · 10�7 4.9 2.73 · 10�6 4.5
160 1.20 · 10�8 4.9 9.27 · 10�8 4.9
320 3.80 · 10�10 5 3 · 10�9 5
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mesh. Fig. 7 explains this result: we compare the nonlinear weights for the HCWENO6 and the HUWENO5
schemes (N = 80 grid points). We can see that the nonlinear weights have everywhere their ideal values for the
HCWENO6 scheme; this is no more the case if one considers the HUWENO5 scheme, although the solution
remains smooth. When t = 3/2p, a shock has already appeared in the solution and it is located at x = 1.238.

Fig. 8 shows the numerical solution on two meshes: a uniform mesh with N = 80 grid points, Fig. 8(a), and
a stretched mesh near the shock place (Dxmin/Dxmax = 0.1), Fig. 8(b). As one can note it, the shock is captured
without any numerical oscillation in both cases. In Fig. 9, we compare this result with the HUWENO5 scheme
on a uniform mesh: in both cases, the shock is captured in the same way though those schemes are structurally
very different. However, the HCWENO6 scheme produces a lower discretization error in the smooth regions,
Fig. 9(b).

Lastly, Fig. 10 compares the nonlinear weights for both schemes; in what concerns the HCWENO scheme,
it is interesting to note that the three weights are zero (w1 = w2 = wc = 0) at the nearest point of the shock
region (x = 1.238): this means that the scheme becomes, locally, a first-order scheme. However, as already
mentioned, this approximation remains local and does not alter the global solution, Fig. 9(b).

4.3. One-dimensional hyperbolic systems: the Euler equations

Unless mentioned, the computations are run on a uniform mesh (D xi ” Cte). N grid points are utilized to
discretize the equations.

The CFL number is defined as
CFL � Dt �maxiðjuij þ aiÞ
miniDxi
We choose CFL = 0.5 for almost all test cases, except for the accuracy tests.

Example 1. We solve the Euler equations, (37), in the domain [0,2]. The initial condition is set to be:
q(x, t = 0) = 1 + 0.2 · sin(px), u(x, t = 0) = 1, p(x, t = 0) = 1, with a 2-periodic boundary condition. The
numerical solution is computed up to t = 2 with Dt = O(Dx2) (HCWENO6 and HUWENO5 schemes). The
errors and numerical orders of accuracy of the density, q, for the HCWENO6 scheme (resp. HUWENO5



Fig. 7. Burgers equation. u(x, t = 0) = 1/2 + sin(px), t = 1/2p, N = 80, CFL = 0.01. Nonlinear weights: (a) HCWENO6 scheme, (b)
HUWENO5 scheme.
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scheme) are shown in Table 3 (resp. Table 4). Both schemes reach their theoretical order of accuracy and the
HCWENO6 remains the most accurate one.

Example 2 (Lax problem).
This problem only contains shocks and simple smooth region solutions. It is simply used to demonstrate the
non-oscillatory properties of the HCWENO6 scheme near discontinuities and to validate the specific choices
made for the indicators of smoothness.

The Lax problem is defined by the following left- and right-initial states
ðq; u; pÞL ¼ ð0:445; 0698; 3:528Þ 8x 6 0; ðq; u; pÞR ¼ ð0:5; 0; 0:571Þ 8x > 0
100 grid points are used to discretize the computational domain [0,1]. The solution is run up to t = 1.30.



Fig. 8. Burgers equation. u(x, t = 0) = 1/2 + sin(px), t = 3/2p, N = 80, CFL = 0.5. HCWENO6 scheme: (a) uniform mesh, (b) non-
uniform mesh (Dxmin/Dxmax = 0.1).
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Although this problem is not necessarily a good test for high-order shock-capturing schemes (a good sec-
ond-order ENO scheme would suffice, see [1] for example), we can see that the HCWENO6 scheme performs
reasonably well, Fig. 11. The contact discontinuity is smeared more than the shock, Fig. 11(a). As expected,
the component-wise reconstruction is oscillatory; this is clearly visible in the velocity profile, Fig. 11(c). Those
oscillations become less significant when the mesh is refined. It should however be pointed out that these oscil-
lations are less ‘‘noisy’’ than more classical component-wise reconstructions such as the ENO scheme, [1] or
the CWENO scheme, [23].

Therefore, it appears that the single density is a well adapted sensor for computing the smoothness indica-
tors for all components.

Example 3 (Interacting blast waves, [24]). We solve the Euler equations, (37), with initial conditions
ðq; u; pÞ ¼
ð1; 0; 103Þ 8x 2 ½0; 0:1½
ð1; 0; 10�2Þ 8x 2 ½0:1; 0:9½
ð1; 0; 102Þ 8x 2 ½0:9; 1�

8><>:

A reflective boundary condition is applied at both x = 0 and x = 1.

The computed density q is plotted at t = 0.038 against the ‘‘exact’’ solution; this solution is a converged
solution computed by a classical second-order TVD scheme (‘‘minmod’’ limiter) with 3000 grid points.

In Fig. 12, we show the numerical results of the HCWENO6 scheme with N = 200 grid points (Fig. 12(a))
and N = 300 grid points (Fig. 12(b)).

We can see that the N = 200 results give reasonably good results although some oscillations appear behind
the first contact discontinuity, near x = 0.70. This solution is improved with the N = 300 results (Fig. 12(b)):
the three contact waves, near x = 0.59, 0.76,0.80, are better predicted. In such a case, the HCWENO6 scheme
resolves the salient features of the flow with a good fidelity.

Example 4 (Shock entropy wave interactions, [2]). This problem is very suitable for high-order shock-
capturing schemes because both shocks and complicate smooth flow features co-exist. In this example, a
moving shock interacts with an entropy wave of small amplitude.

On the domain [0, 5], the initial condition is the following:
ðq; u; pÞ ¼ ð3:857143; 2:629369; 10:333333Þ 8x < 1=2

ðq; u; pÞ ¼ ðe�e sinðkxÞ; 0; 1Þ 8x P 1=2
where e and k are the amplitude and the wave number of the entropy wave, respectively.



Fig. 9. Burgers equation. Case with shock. N = 80, t = 3/2p. Comparison between the HCWENO6 scheme and the HUWENO5 scheme.
(a) Computed solution, (b) discretization error.
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The mean flow is a right moving Mach 3 shock. If e is small compared to the shock strength, the shock will
go to the right of the computational domain, at approximately the non-perturbed shock speed and generate a
sound wave that travels along with the flow behind the shock. At the same time, the small amplitude,
low-frequency entropy waves are generated in front of the shock. After having interacted with the shock, these
waves are compressed in frequency and amplified in amplitude.

The main goal of such a test is to check if the structure of the amplified waves is not lost after having
crossed the shock wave. Since the entropy wave is very weak relative to the shock, any excessive numerical
oscillation could alter the generated waves and the entropy waves.

In our computations, we take e = 0.01. Accordingly, the amplitude of the amplified entropy waves
predicted by a linear analysis, [20,21], is 0.08690716 (shown in the following figures as horizontal solid lines).
The pre-shock wave number, k, is selected such that k 2 {13,26,39}. To get rid of the transient waves due to
the initialization, the numerical procedure is defined so that the shock crosses the computational domain
twice. The numerical solution is examined when the shock reaches x = 4.5 for the second time. For those
computations, the CFL is lowered to the value 0.30.

First, for k = 13, we use 400 grid points that is effectively 10 points in each wave length of the generated
entropy wave. The results are shown in Fig. 13 (the mean flow has bee subtracted from the numerical
solution). We can see that on this grid, the HCWENO6 scheme calculates the amplified entropy waves quite
well, although their amplitude is slightly attenuated, Fig. 13(a). On a grid of 800 points, Fig. 13(b), the
resolution becomes very good with the HCWENO6 scheme. To compare, we produce the numerical results
obtained with 1200 grid points, by using the HUWENO5 scheme, Fig. 13(c); obviously, the scheme produces
excessive damping of the entropy waves: the reason is given by the nonlinear weights that do not reach
accurately their ideal values on such a grid. Lastly, Fig. 13(d) and (e) produces numerical results for k = 26,
N = 800 and k = 39, N = 1200, respectively. Even if the amplitude of the entropy waves is slightly attenuated
behind the shock, the HCWENO6 scheme keeps on giving good results.

Example 5 (Propagation of sound waves through a transonic nozzle, [22]). The computation of sound propa-
gating through a choked nozzle presents a challenging problem for a shock-capturing scheme. To reduce the
complexity of the problem, but retaining the basic physics and difficulties, this propagation problem is mod-
elled by a one-dimensional acoustic wave transmission problem through a transonic nozzle, [22].

In this problem, an acoustic wave is introduced at the nozzle inflow region and the sound wave that travels
downstream through the transonic nozzle and interacts with the shock is to be calculated. The amplitude of
the incoming sound wave is e = 10�5, which is very small compared to the mean values of the flow. The nozzle
flow is modelled by the one-dimensional Euler equations with variable nozzle area:



Fig. 10. Burgers equation. Case with shock. N = 80, t = 3/2p. Nonlinear weights: (a) HCWENO6 scheme, (b) HUWENO5 scheme.

Table
One-d
bound

N

10
20
40
80

160
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3
imensional Euler equations q(x, t = 0) = 1 + 0.2 · sin(px), u(x, t = 0) = 1, p(x, t = 0) = 1; HCWENO6 scheme with periodic
ary conditions t = 2; Dt = Dx2/2; L1 and L1 errors of density q

L1 error L1 order L1 error L1 order

7.15 · 10�4 – 5.59 · 10�4 –
8.92 · 10�6 6.2 7 · 10�6 6.3
1.21 · 10�7 6.2 9.49 · 10�8 6.2
1.75 · 10�9 6.1 2.12 · 10�9 6.1
3.14 · 10�11 6 3.80 · 10�11 6



Table 4
One-dimensional Euler equations q(x, t = 0) = 1 + 0.2 · sin(px), u(x, t = 0) = 1, p(x, t = 0) = 1; HUWENO5 scheme with periodic
boundary conditions t = 2; Dt = Dx2/2; L1 and L1 errors of density q

N L1 error L1 order L1 error L1 order

10 5.44 · 10�3 – 4.25 · 10�3 –
20 1.33 · 10�4 5 1.04 · 10�4 5
40 3.64 · 10�6 4.9 2.86 · 10�6 4.9
80 1.06 · 10�7 5.1 8.36 · 10�8 5.1

160 3.22 · 10�9 4.9 2.66 · 10�9 4.8
320 1.0 ·10�10 5 1.30 · 10�10 4.9

Fig. 11. The Lax problem. HCWENO6 scheme. (N = 100, t = 1.30, CFL = 0.5). (a) Density, (b) pressure, (c) velocity.
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A
dA
dx

U0

U � ½q; qu; qE�t; F � ½qu; qu2 þ p; quH �t; U0 � ½qu; qu2; quH �t
ð46Þ
The area of the nozzle is
AðxÞ ¼
0:536572� 0:198086� exp � Logð2Þ x

0:6

� �2
� �� �

; x > 0

1:0� 0:661514� exp � Logð2Þ x
0:6

� �2
� �� �

; x < 0

8><>:



Fig. 12. Blast wave problem. Density q. t = 0.038, CFL = 0.5. HCWENO6 scheme: (a) N = 200, (b) N = 300.
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Flow variables are non-dimensionalized by using the upstream values. The velocity scale is a1 (speed of
sound), the length scale is D (diameter of the nozzle) and the density scale is the static density, q1.

Then, the mean flow at the inlet is
�q

�u

�p

264
375

inlet

¼
1

M1

1=c

264
375 ð47Þ
The Mach number at the inlet, M1, is 0.2006533 and the pressure at the exit, pexit, is 0.6071752, so that a
shock is formed inside the nozzle. The shock location is then: xs = 0.3729.

Just upstream of the shock wave, the Mach number is M1 = 1.465 and downstream, M2 = 0.714. The
pressure ratio (intensity of the shock wave) is then p2/p1 = 2.337.

The incoming acoustic wave, with angular frequency, x = 0.6p, is described as
q

u

p

264
375

acoustic

¼ e

1

1

1

264
375 sin x

x
1þM1

� t
� �	 


ð48Þ
The acoustic perturbations for the derivatives are derived from (48).

In the present work, the acoustic wave will be computed directly by solving the nonlinear governing equa-
tions rather than solving the linearized equations (see [22] for some examples on the linearized problem). This
makes it harder to compute the acoustic waves. The challenge is whether the small amplitude wave can still be
captured in the computation by the HCWENO6 scheme. The computational domain is �10 6 x 6 10 and a
non-uniform mesh, refined in the throat region, is used.

To begin, the steady state of the nozzle flow is computed. For the flow variables, the initial conditions are
specified by using the mean exact solution of this problem.

The derivatives are then estimated by using a centred second-order finite-difference approximation. At the
boundaries, the back pressure is specified at the outlet and the total pressure and density are specified at the
inlet. The other needed information at both the inlet and outlet, are obtained using extrapolation from their
neighbouring mesh points. Concerning the derivatives, all those quantities are set to zero at the inlet since the
flow is assumed uniform. At the outlet, the pressure derivative is set to zero while the remaining quantities are
extrapolated in order for the error to leave the computational domain without numerical reflections.

The steady-state solution of (46), obtained using a 120 points non-uniform mesh (Dxmin = 0.10,
Dxmax = 0.49) with CFL = 0.80, is compared with the exact solution, Fig. 14(a). The solution is converged



Fig. 13. Shock entropy wave interaction: t = 3.38061. (a) k = 13, N = 400; (b) k = 13, N = 800; (c) HUWENO5: k = 13, N = 1200; (d)
k = 26, N = 800; (e) k = 39, N = 1200.
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to machine precision, Fig. 14(b). It can be seen that flow properties are uniform in most region of the nozzle,
but change dramatically near the nozzle throat, Fig. 14(a). Lastly, the shock is captured without any numerical
oscillation. Note however, that the numerical parameters must be carefully selected to converge towards the



Fig. 14. Propagation of sound waves through a transonic nozzle. Steady-state solution. HCWENO6 scheme. CFL = 0.8, N = 120. (a)
Mean pressure, (b) maximum residual.

2452 G. Capdeville / Journal of Computational Physics 227 (2008) 2430–2454
steady-state: as indicated by the theoretical stability analysis, the stability domain of the HCWENO6 is altered
by a strongly varying source term.

After the steady-state flow-field is computed, the acoustic wave propagation can be simulated using the
same nonlinear solver. First, the initial conditions are specified using the steady-state solution previously cal-
culated, then, at the inlet, the solution (48) is superimposed for the variables and its derivatives.

Numerical solutions of the acoustic pressure at t = 14T are shown in Fig. 15 and compared with the ana-
lytical solution (given in [22]).

With only 100 grid points, the wave pattern is not correctly captured, Fig. 15(a), while a greatly improved
result is produced using a 120 point non-uniform mesh, Fig. 15(b). However, the amplitude of the acoustic
wave at the shock location is lower than that indicated by the analytical solution: this is due to the first-order
error introduced by the scheme right at this place. In spite of this difficulty, one can note that the profiles of the
acoustic pressure both upstream and downstream the shock location, agree very well with the analytical solu-
tion, Fig. 15(b).
Fig. 15. Propagation of sound waves through a transonic nozzle. Acoustic pressure at t = 14T. HCWENO6 scheme. CFL = 0.8. (a)
N = 100, Dxmin/Dxmax = 0.24. (b) N = 120, Dxmin/Dxmax = 0.20.
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As already mentioned, any high-order scheme captures the shock with a first-order accuracy; however,
those results demonstrate that this defect does not alter the smooth part of the solution: the multi-scale struc-
ture of the solution is preserved after having crossed the shock wave. In other words, this result means that the
numerical error generated by capturing the shock remains confined and does not propagate. Thus, this prop-
erty explains the good results obtained with the HCWENO6 scheme. The main advantage of such a scheme
comes from its compactness and the definition of its nonlinear weights: this enables to generate a local first-
order correction.

5. Concluding remarks

In this paper, we constructed a new WENO Hermite interpolation for 1D hyperbolic conservation laws.
This interpolation results from a convex centred combination of Hermite polynomials. Combined with a
third-order TVD Runge–Kutta procedure for the time-integration, we demonstrated that this procedure gen-
erates a sixth-order scheme in smooth regions and for small CFLs. Furthermore, a new formulation of the
nonlinear weights in the convex combination, enables to generate a nonlinearly stable reconstruction near dis-
continuities. For this purpose, the scheme becomes of the fourth-order in the cells close to the shock and can
even become first-order at the location of the shock if the Hermite interpolation generates oscillations.

Then, it becomes possible to compute, with a high degree of accuracy, multi-scales problems containing
discontinuities. Lastly, the choice of a central WENO procedure enables to widen the domain of application
of the scheme to non-uniform meshes.

However, some work is needed to improve this method before a multi-dimensional extension. This is espe-
cially true in some special cases such as, for example, problems with source terms. Indeed, although we suc-
cessfully computed some of those problems, the computations necessitated a careful tuning of the parameters
of the scheme (CFL, grid stretching). An asymptotic stability analysis even demonstrated that the scheme
could become unstable if the number of grid points becomes insufficient.

It is important to deal with this difficulty. For example, in nonlinear aero-acoustics, source terms must be
incorporated into the equations if one wants to model nonlinear regions of source of sound. This point will be
emphasized in a next future.

Similarly, the generation of a specific Riemann solver for a Hermite formulation of a hyperbolic problem
will be addressed. In such a case, the benefit hoped will be an increased domain of stability for the discretiza-
tion and an improved description of the physics. Moreover, to maintain the high performances of the HCW-
ENO reconstruction for complex geometries, the present procedure will be extended to multi-dimensional
problems.
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